Excitatory amino acid binding sites in the rat hippocampus after transient forebrain ischemia.

نویسندگان

  • H Onodera
  • T Araki
  • K Kogure
چکیده

The influence of transient forebrain ischemia on the temporal alteration of glutamate receptors in the hippocampal formation was analyzed by means of in vitro quantitative receptor autoradiography. We compared the binding of N-methyl-D-aspartate (NMDA) receptors using [3H]3-[+/-)2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), noncompetitive NMDA antagonist binding sites using [3H]N-(1-(2-thienyl)-cyclohexyl)-3,4-piperidine (TCP), and kainate (KA) receptors. In the CA1 subfield of the hippocampus, the number of NMDA receptors and noncompetitive NMDA antagonist binding sites remained constant during the early stage of recirculation when the CA1 pyramidal cells remained histologically intact. A significant reduction of these receptor densities was observed 7 days following ischemia, when NMDA receptors and noncompetitive NMDA antagonist binding sites lost 64 and 29% of their binding sites in the stratum radiatum of the CA1, respectively. The KA receptor density in the CA1 subfield decreased by 44% 7 days after ischemia. Marked loss of the above-mentioned receptors in the CA1 after selective depletion of the CA1 pyramidal cells indicated that NMDA receptors, noncompetitive NMDA antagonist binding sites, and KA receptors in the CA1 are predominantly localized on the CA1 pyramidal cells. NMDA receptor density in the CA3 gradually decreased during the recirculation period. The stratum moleculare of the dentate gyrus, whose structure was histologically intact after ischemic insult, also showed a reduction of NMDA receptors 7 days following ischemia. [3H]KA receptor density in the stratum lucidum of the CA3 and in the hilus also decreased during recirculation. These

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SPD 502: a water-soluble and in vivo long-lasting AMPA antagonist with neuroprotective activity.

Accumulating preclinical data suggest that compounds that block the excitatory effect of glutamate on excitatory amino acid receptors may have neuroprotective effects and utility for the treatment of neurodegeneration after brain ischemia. In the present study, the in vitro and in vivo pharmacological properties of the novel glutamate antagonist SPD 502 [8-methyl-5(4-(N,N-dimethylsulfamoyl)phen...

متن کامل

Dynamic changes of excitatory amino acid receptors in the rat hippocampus following transient cerebral ischemia.

The changes in excitatory amino acid receptor ligand binding induced by transient cerebral ischemia were studied in the rat hippocampal subfields. Ten minutes of ischemia was induced by common carotid artery occlusion combined with hypotension, and the animals were allowed variable periods of recovery ranging from 1 day to 4 weeks. The binding of 3H-AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxaz...

متن کامل

Diazepam, given postischemia, protects selectively vulnerable neurons in the rat hippocampus and striatum.

Following cerebral ischemia, certain populations of neurons degenerate. Excessive accumulation of excitatory amino acids in the synaptic cleft, activation of excitatory amino acid receptors, and influx of calcium into neurons play a key role in the development of ischemia-induced neuronal death. We hypothesized that neuroprotection may be achieved by enhancing inhibitory (i.e., gamma-aminobutyr...

متن کامل

Brain-derived neurotrophic factor improves long-term potentiation and cognitive functions after transient forebrain ischemia in the rat.

We investigated the effect of brain-derived neurotrophic factor (BDNF) on hippocampal long-term potentiation (LTP) and cognitive functions after global cerebral ischemia in the rat. After four-vessel occlusion, BDNF was administered via an osmotic minipump continuously over 14 days intracerebroventricularly. Electrophysiological experiments were performed 14 days after cerebral ischemia. Test s...

متن کامل

Dehydroepiandrosterone (DHEA) reduces neuronal injury in a rat model of global cerebral ischemia.

INTRODUCTION Many studies report an inverse correlation between levels of DHEA and neurological diseases. Exogenous DHEA protects hippocampal neurons against excitatory amino acid induced neurotoxicity. The purpose of this experiment is to evaluate the effect of DHEA in an animal model of transient but severe forebrain ischemia. METHODS At thirteen days prior to induction of ischemia, male Wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism

دوره 9 5  شماره 

صفحات  -

تاریخ انتشار 1989